Viscosity of concentrated suspensions: influence of cluster formation.

نویسندگان

  • V Starov
  • V Zhdanov
  • M Meireles
  • C Molle
چکیده

Dispersed particles can form clusters even at low concentrations. Colloidal and hydrodynamic forces are responsible for this phenomenon and these forces determine both structure and size of clusters. We assume that the viscosity of a concentrated suspension is completely determined by cluster size distribution, regardless if clusters form under the action of colloidal, hydrodynamic interactions or applied shear rates. Based on this assumption an equation, which describes dependency of viscosity on a concentration of dispersed particles taking into account cluster formation, is deduced. Under special restrictions the deduced dependency coincides with the well-known Dougherty-Krieger's equation except for a clear physical meaning of parameters entered. Our consideration shows that Dougherty-Krieger's equation has deeper physical background than it has been supposed earlier. Experimental verification of the suggested model shows a good agreement with the theory predictions and proves a presence of clusters even at low concentrations of dispersed particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscosity of a concentrated suspension of rigid monosized particles.

This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was...

متن کامل

On the Viscosity of Concentrated Suspensions of Charged Colloids

This work is concerned with the theoretical estimation of the low-shear viscosity of concentrated suspensions of charged-stabilized latex particles. Calculations are based on the assumption that particles interacting through purely repulsive potentials behave as equivalent hard-spheres (HS), and suspension viscosity may be analyzed in the framework of HS systems. In order to predict numerically...

متن کامل

Dispersion Properties of Nano YSZ Particles in Aqueous Suspensions

In the present research, the aqueous suspensions of nano-sized YSZ particles were prepared using a common and available dispersant (Dolapix CE64) at different pH values and their stability were evaluated through the sedimentation height, viscosity measurement, and microstructural observation. Different amounts of dispersant were tested and the optimum percentage was examined by measuring the vi...

متن کامل

Rheology and Structure of Concentrated Suspensions of Hard Spheres. Shear Induced Particle Migration

The apparent shear viscosity, in the non-Browman Ilmit, for a homogeneous suspension of monodispersed hard spheres in systems ranging from dilute to concentrated was previously established. From an estimation of the viscous dissipation. We use the inter-particle distance dependence of the shear viscosity for determining the components of a local stress tensor associated with the transient netwo...

متن کامل

Multiple Effects of the Second Fluid on Suspension Viscosity

Previous research has shown that adding a small amount of a second immiscible fluid to particulate suspension can result in a significant influence on viscosity. In this study, the effects of the second fluid addition over a small dosage range on the rheological properties of particle suspension were investigated. As the dosage of the second fluid was increased, the viscosity and yield stress i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in colloid and interface science

دوره 96 1-3  شماره 

صفحات  -

تاریخ انتشار 2002